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Abstract. We study geometrically constrained magnetic walls in a three dimensional ge-

ometry where two bulks are connected by a thin neck. Without imposing any symmetry

assumption on the domain, we investigate the scaling of the energy as the size of the neck
vanishes. We identify five significant scaling regimes, for all of which we characterise the

energy scaling and identify the asymptotic behaviour of the domain wall. Finally, we notice

the emergence of sub-regimes that are not present in the previous works due to restrictive
symmetry assumptions.

1. Introduction

Magnetic domain walls are regions in which the magnetisation of a material changes from one
value to another one. In the presence of extreme geometries, such as that of a dumbbell-shaped
domain (see Figure 1), the magnetic wall is more likely to be found in or around the neck; in this
and similar geometry-driven situations, one usually speaks of geometrically constrained walls, to
stress the fact that the domain shape plays a pivotal role in the localisation of the transition
region of the magnetisation, for instance, when prescribing it in the bulky parts of the dumbbell.

The study of the behaviour of the magnetisation in a dumbbell-shaped domain is relevant in
micro- and nano-electronics application, where the neck of the dumbbell models magnetic point
contacts. We refer the reader to [11, 17, 18, 20, 25, 26] for an incomplete list of applications
and contexts of relevance of geometrically constrained walls. If one imposes two different values
of the magnetisation, one in each of the two macroscopic components, a transition is expected
in the vicinity of the neck, as initially observed by Bruno in [5]: if the neck is small enough, so
that the geometry of the material varies drastically when passing from one bulk to the other,
it can play a crucial role in determining the location of the magnetic wall, by influencing the
mere minimisation of the magnetic energy. Three scenarios are to be considered: the transition
may happen either completely inside the neck, or partly inside and partly outside the neck, or
completely outside the neck.

Figure 1. A pictorial representation of a typical domain of interest.
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The model features a sufficiently smooth potential which is minimal at the imposed values of
the magnetisation in the bulk parts of the dumbbell, and a gradient term penalising transitions;
the two are competing as soon as the values of the magnetisation in the bulks are not the
same. To model the geometries that are of interest in the applications, we will consider an
infinitesimally small neck, whose size is determined by three parameters ε, δ, η > 0:

Nε := {x = (x, y, z) ∈ R3 : |x| ⩽ ε, |y| < δ, |z| < η}, (1.1)

with the understanding that all three of them vanish when ε → 0, that is δ = δ(ε) → 0 and
η = η(ε) → 0, as ε→ 0. The full domain is described by

Ωε := Ωℓ
ε ∪Nε ∪ Ωr

ε, (1.2)

where Ωℓ
ε = Ωℓ − (ε, 0, 0) and Ωr

ε = Ωr + (ε, 0, 0), for certain open sets Ωℓ ⊂ {x < 0} and
Ωr ⊂ {x > 0} such that 0 ∈ ∂Ωℓ ∩ ∂Ωr . This geometry makes the x direction the preferred
one, whereas the y - and z -direction can be interchanged upon a change of coordinates; this
motivates the fact that we will use, throughout the work, the subscript ε alone as an indication
of the smallness of the neck.

We are interested in understanding the asymptotic behaviour, as ε → 0, of stable critical
points (see Definition 2.2) of the energy

F (u,Ωε) :=
1

2

∫
Ωε

|∇u(x)|2 dx+

∫
Ωε

W (u(x)) dx , (1.3)

defined for u ∈ H1(Ωε), where dx = dxdydz andW : R → [0,+∞) is a function of class C2 such that

W−1(0) = {α, β} for some α < β and lim
|t|→+∞

W (t) = +∞.
(1.4)

In (1.3), the function u represents a suitable quantity related to the magnetisation field defined
on Ωε and the potential W favours the values u(x) = α and u(x) = β for the magnetisation,
corresponding to those to be imposed in the bulks. Here, the competition between the potential
and the gradient terms is significantly influenced by the geometry of Ωε . The energy (1.3) was
considered in [5] as a simplified model for studying the magnetisation inside a thin dumbbell
domain under the assumption that the magnetic field is of the form

m(x) = (0, cos(u(x)), sin(u(x))) . (1.5)

Despite this simplifying assumption, the mathematical analysis is rich enough to exhibit non-
trivial behaviours of the magnetisation.

1.1. Related literature. The body of literature on this problem counts many physical contri-
butions stemming from Bruno’s work [5] and a few mathematical items, which we are going to
briefly review to give a context to our novel results.

In [5], Bruno considers the special geometry of a thin (0 < h ≪ 1) three-dimensional wall
Ω = S× (−h, h), where S is a planar region with a dumbbell shape whose neck is located at the
origin and the bulks are in {x < 0} and {x > 0} . He assumes that the preferred directions of
the magnetisation vector are m = (0, 0,±1) and makes the Ansatz (1.5) that it varies only in the
y -z plane, as a function of the x -coordinate alone. The energy that Bruno minimises is the one
usually describing Bloch walls and turns out to be a functional of u alone, with two emerging
length scales when imposing that m ≈ (0, 0,±1) in {±x > 0} : one driven by the shape S of the
domain, the other one dictated by the physical parameters entering the expression of the energy.
Despite Bruno’s insightful intuition, the special form of the magnetisation has some limitations,
some of which were removed (for instance, by allowing m to vary also in the x -z plane and
considering fully three dimensional geometries) in [21].

Among the mathematical literature on this topic, we mention [1, 2, 3, 4, 9, 13, 14, 15, 16]
as far as the PDE aspect is concerned, and [6, 8, 7, 24] for variational approaches. Finally, we
discuss two more recent contributions in detail, since the results we obtain are related to them.

In the work by Kohn & Slastikov [19], the problem is studied in the full three-dimensional
setting, with the assumption that the geometry be axisymmetric: the dumbbell Ωϵ is a rotation
body around the x axis, so that the shape parameters of the neck are essentially its length



GEOMETRICALLY CONSTRAINED WALLS IN THREE DIMENSIONS 3

ε and its radius δ . By taking advantage of a scale-invariant Poincaré inequality for Sobolev
functions and by reducing the problem to a one-dimensional variational one, the authors proved
the existence of three possible regimes, according to the value of the limit limε→0 δ/ε = λ ∈
[0,+∞] and singled out a thin neck regime (λ = 0), a normal neck regime (λ ∈ (0,+∞)),
and a thick neck regime (λ = +∞). In the first case the transition happens entirely inside the
neck and is an affine function of the x -coordinate, in the second case the transition happens
across the neck, partially inside and partially outside, depending on the value of λ , whereas in
the third case the transition happens entirely outside the neck. These behaviours are found by
studying the energy of particular competitors (essentially, an affine transition inside the neck and
a harmonic transition in a spherical shell just outside the neck) and then rescaling the minimiser
in the vicinity of the neck.

In the works by Morini & Slastikov [22, 23] the same problem was addressed in the case
of magnetic thin film, that is when the domain has the shape of a dumbbell, but it is two-
dimensional, that is, in Bruno’s setting in the limit as h → 0. Mathematically speaking, the
endeavour is more difficult on two accounts: the scale-invariant Poincaré inequality is not avail-
able in dimension two, and the problem loses its variational character. Methods that are typical
from the study of PDE’s were employed to construct suitable barriers to estimate the solutions.
Moreover, due to the slow decay of the logarithm (the fundamental solution to Laplace’s equation
in two dimensions), sub-regimes became available in addition to the thin, regular, and thick neck
regimes already analyzed by Kohn & Slastikov: the sub-critical, critical, and super-critical thin
neck regimes were found according to the value of the limit limε→0(δ| ln δ|)/ε ∈ [0,+∞] , dis-
playing a richer variety. In the case of sub-regimes, the rescaling of the minimisers to study their
asymptotic behaviour is not trivial; nonetheless, the authors managed to characterise the pro-
files as the unique solutions to certain PDE’s where the boundary conditions track the expected
asymptotic behaviour.

Both in Kohn & Slastikov’s and in Morini & Slastikov’s papers the technique involves two
steps: (i) estimate the energy of minimisers to understand if the wall is located all inside, all
outside, or across the neck, and

(ii) rescaling the whole domain Ωε to an appropriate Ω∞ in a way that either a variational
problem or a PDE can be studied in Ω∞ , which brings to the attention that the boundary ∂Ω∞
must be a set in which boundary conditions can be prescribed.

2. Main result

2.1. Set up of the problem. We study a mathematical model to characterise magnetic domain
walls in a three-dimensional dumbbell-shaped domain (see Figure 1). The two bulks are modelled
by two bounded, connected, open sets Ωℓ,Ωr ⊂ R3 such that

(H1) the origin (0, 0, 0) belongs to ∂Ωℓ ∩ ∂Ωr ;

(H2) Ωℓ ⊂ {x < 0} and Ωr ⊂ {x > 0} ;
(H3) there exists r0 > 0 such that (∂Ωℓ)∩Br0(0, 0, 0) and (∂Ωr)∩Br0(0, 0, 0) are contained

in the plane {x = 0} , i.e., the bulks are flat and vertical near the origin, where the
conjunction with the neck will be located.1

We let ε > 0 and define the neck region as in (1.1), so that the dumbbell-shaped domain Ωε is
defined as in (1.2), where Ωℓ

ε = Ωℓ − (ε, 0, 0) and Ωr
ε = Ωr + (ε, 0, 0). We notice that Ωε is a

bounded, connected, open set with Lipschitz boundary.

We now give the relevant definitions of critical points and isolated local minimiser for the
functional F (·,Ωε) introduced in (1.3).

1We point out that this assumption is made for mere convenience and it does not affect the generality of our
results. While allowing the reader to focus on the main qualitative geometrical properties of the domain, it can

be removed following the strategy outlined in [22].
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Definition 2.1. We say that a function uε ∈ H1(Ωε) is a critical point of F (·,Ωε) if it is a
weak solution to the system 

∆uε =W ′(uε) in Ωε,

∂uε
∂ν

= 0 on ∂Ωε.

Definition 2.2. For ε > 0 , let uε ∈ H1(Ωε) be a critical point of F (·,Ωε) . We say that the
family (uε)ε is an admissible family of nearly locally constant critical points if

(a) there exists ε̄ > 0 such that sup
{
∥uε∥∞ : ε ∈ (0, ε̄]

}
=:M < +∞ ;

(b) ∥uε − α∥L1(Ωℓ
ε)

→ 0 and ∥uε − β∥L1(Ωr
ε)

→ 0 , as ε→ 0 .

Moreover, we say that (uε)ε ⊂ H1(Ωε) is an admissible family of local minimisers if it satisfies,
additionally,

(c) there exist ε0 > 0 and θ0 > 0 such that for ε ∈ (0, ε0] we have

F (v,Ωε) ⩾ F (uε,Ωε) for all v ∈ H1(Ωε) such that 0 < ∥v − uε∥L1(Ωε) ⩽ θ0 .

Regarding the existence of minimisers, [19, Theorem 3.1] can easily be adapted to our setting.

Theorem 2.3. For ε > 0 , let u0,ε : Ωε → R be defined as

u0,ε(x) :=


α if x ∈ Ωℓ

ε ,

α+ β

2
if x ∈ Nε ,

β if x ∈ Ωr
ε .

If uε ∈ H1(Ωε) is such that F (uε,Ωε) ⩽ F (v,Ωε) for every v ∈ Bε , where

Bε := {u ∈ H1(Ωε) : ||u− u0,ε||L2(Ωε) ⩽ d, ∥u∥L∞(Ωε) <∞}, (2.1)

with d < min{|Ωℓ|1/2, |Ωr|1/2} , then the family (uε)ε is an admissible family of local minimisers
according to Definition 2.2, and ∥uε − u0,ε∥L2(Ωε) → 0 , as ε→ 0 .

Unlike [19], we do not assume axial symmetry of the domain and this results in a richer
variety of regimes. In particular, we find that some of these regimes admit sub-regimes, as was
discovered for magnetic thin films in [22, 23]. We discuss all the possible cases in the next
section.

2.2. Heuristics. In this section, we show how to heuristically guess where the main part of the
energy concentrates, just by looking at the asymptotic relationships between the three geometric
parameters ε, δ, η .

First of all, we note that, given the privileged role of the parameter ε , it is trivial to see that
the roles of δ and η can be interchanged upon switching the coordinate axes y and z . The
regimes investigated in [19] corresponds to the cases where δ ∼ η . Therefore, here we limit
ourselves to consider the other following regimes:

(i) Super thin: ε≫ δ ≫ η ;
(ii) Flat thin: ε ≈ δ ≫ η ;
(iii) Window thick : δ ≫ η ≫ ε ;
(iv) Narrow thick : δ ≫ ε ≈ η ;
(v) Letter-box : δ ≫ ε≫ η .

We now want to guess where the transition will happen: completely inside, completely outside,
or in both regions. To understand this, we reason as follows. First of all, we expect the main
part of the energy to be the Dirichlet integral. Therefore, we consider two harmonic functions
that play the role of competitors for the minimisation problem

min{F (v,Ωε) : v ∈ Bε};
one where the transition from α to β happens inside the neck, and the other one where it
happens only outside (and the competitor is constant inside the neck). We then compare their
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energies (whose computations will be carried out in Section 3) to get a guess of where the
transition will occur. The first harmonic function will be referred to as the affine competitor,
and has energy of order

Energy of the affine competitor =
δη

ε
.

The second harmonic function will be referred to as the elliptical competitor, and has energy of
order

Energy of the elliptical competitor =
δ

|ln(η/δ)|
.

When one of the two energies is dominant with respect to the other, it is clear where we expect
the transition to happen. In the case they are of the same order, we guess that the transition
is both inside and outside the neck. This will be later confirmed by rigorous analysis. The
comparison of the energies of the two harmonic competitors leads to the following heuristics:

(i) Super thin neck : In this case, we have

δη

ε

| ln(η/δ)|
δ

=
δ

ε

(η
δ
|ln(η/δ)|

)
→ 0,

as ε→ 0. Then we expect the transition to happen inside Nε .
(ii) Flat thin neck : In this case, we obtain

δη

ε

| ln(η/δ)|
δ

=
η

δ
|ln(η/δ)| → 0,

thus the transition is occurring inside Nε .
(iii) Window thick neck : The comparison of the energies of the harmonic competitors gives

δη

ε

|ln(η/δ)|
δ

=
η

ε
|ln(η/δ)| → +∞,

as ε→ 0. The transition is expected to happen entirely outside the neck.
(iv) Narrow thick neck : In this case, we have

δη

ε

|ln(η/δ)|
δ

= |ln(η/δ)| → +∞,

as ε→ 0. Therefore, we expect the transition to happen outside the neck.
(v) Letter-box neck : In this case, we have the presence of sub-regimes. Indeed, the compar-

ison of the orders of the energies of the harmonic competitors gives

δη

ε

|ln(η/δ)|
δ

=
η

ε
|ln(η/δ)| ,

whose asymptotic behaviour is not clear. Therefore, we have to consider the following
sub-regimes:
(a) Sub-critical letter-box neck, when

δη

ε

|ln(η/δ)|
δ

→ 0,

as ε→ 0. In such a case, we expect the transition happens inside the neck.
(b) Critical letter-box neck, when

δη

ε

|ln(η/δ)|
δ

→ ℓ ∈ (0,+∞),

as ε → 0. In this case, we expect the transition happens both inside and outside
the neck.

(c) Super critical letter-box neck, when

δη

ε

|ln(η/δ)|
δ

→ +∞,

as ε→ 0. Here, the transition is expected to happen outside the neck.
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2.3. Novelty of the present contribution and main results. In this paper, we study the
full three-dimensional case of the problem with no symmetry assumption on the shape of the
neck: it will be a parallelepiped as in (1.1) with all three dimensions independent from one
another and all vanishing to zero as ε→ 0. When considering the mutual rate of convergence to
zero of the three parameters ε, δ, η , we single out five regimes that do not emerge in the analysis
of Kohn & Slastikov, and for each of them we study the energy scaling. We notice that in our
three-dimensional setting the scale-invariant Poincaré inequality is not always available. This
inequality ensures that, given an open set A ⊂ R3 , there exists a constant C > 0 such that(∫

λA

∣∣∣u(x
λ

)
− uA

∣∣∣6 dx

) 1
6

⩽ C

(∫
λA

∣∣∣∇u(x
λ

)∣∣∣2 dx

) 1
2

,

for all λ > 0, and all u ∈ H1(A). Here, uA denotes the average of u in A . Note that the
argument to get such inequality is the same to guess the conjugate exponent in the Gagliardo-
Nierenberg inequality. Despite that, we are able to investigate the behaviour of local minimisers
and the associated rescaled limiting problem, which possesses a variational structure in every
regime.

Due to the peculiar geometry of our problem induced by the mismatch between η and δ ,
namely η ≪ δ , the cross section of the junction of the neck with the bulks is a rectangle with a
very large aspect ratio; this allows us to find an ellipsoidal competitor carrying less energy than
the spherical one proposed in the previous works. As it depends on |ln(η/δ)| , the energy scaling
turns out to exhibit sub-regimes in some of these cases, as described in Section 2.2.

The main achievements of the paper are the following.

(A1) For all of the above-mentioned regimes, we identify where the transition happens. More
precisely, we find sequences (ϱε)ε depending explicitly on the parameters ε, δ, η , with
ϱε → +∞ , as ε→ 0, such that

lim
ε→0

ϱεFε(uε,Ωε) =: κ ∈ (0,+∞),

lim
ε→0

ϱεFε(uε, Nε) =: κN ∈ [0, κ].

Their interpretation is the following: κ is the asymptotic energy in the whole domain,
and κN that in the neck. Therefore, if κN = κ , we say that the transition happens
entirely inside the neck, if κN = 0, the transition happens entirely outside the neck,
while if κN ∈ (0, κ), the transition happens both inside and outside the neck. In
particular, we rigorously justify the expectations derived from the above heuristics.

(A2) In all of the regimes, we consider the profile in the region where the transition happens.
We identify a proper rescaling of the independent variables that allow us to prove
that such rescaled profile converges to a solution of a Dirichlet energy in a limiting
domain with suitable boundary conditions. Only in the critical letter-box regime, we
need to assume convergence to a limiting profile, and we prove that the latter solves a
minimisation problem (see Remark 2.4). In all cases, local minimisers will converge to
a constant in the region where the transition does not happen.

We refer the reader to Section 4 for the precise statements and proofs of these results.

Remark 2.4. The reason why in the critical letter-box regime we cannot prove compactness of
a sequence of local minimisers, is the following. We do expect to see part of the transition inside
the neck. Therefore, we rescale the local minimiser uε as vε(x, y, z) := uε(εx, δy, ηz) . In such a
way, we get that

ε

2δη

∫
Nε

|∇uε|2 dx =
1

2

∫
[−1,1]3

(
(∂xvε)

2 +
ε2

δ2
(∂yvε)

2 +
ε2

η2
(∂zvε)

2
)
dx.

The left-hand side is bounded thanks to the energy of the affine competitor. Unfortunately, since
in this regime ε ≪ δ , we do not get a lower bound of the y -derivative of the function vε , even
if we prove that each limit of the sequence (vε)ε will only depend on the first variable.
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3. Competitors

The goal of this section is to build two harmonic competitors and to compute the order of
their energies. For clarity, we present the affine and elliptic competitors separately. However, at
the end of the section, they are mixed together in a more general way.

3.1. Affine competitor. Here we build the affine competitor inside the neck and we compute
its energy. Let A,B ∈ R , and define the affine function ξε : R3 → R as

ξε(x) :=


A if x ∈ Ωℓ

ε ,

B −A

2ε
x+

B +A

2
if x ∈ Nε ,

B if x ∈ Ωr
ε .

(3.1)

Then, we have that

1

2

∫
Nε

|∇ξε|2dx =
δη

ε
(B −A)2. (3.2)

3.2. Elliptic competitor. In [19], the authors built a harmonic competitor by imposing bound-
ary condition on half-spheres centred at the edges of the neck. The choice of the spherical ge-
ometry was dictated by the fact that the authors required δ = η . In our case, the geometry will
be that of an ellipsoid, suggested by the fact that one of the parameters δ and η is larger than
the other.

In order to define our competitor, we first need to introduce the so-called prolate spheroidal
coordinates. Consider, for a > 0, the change of coordinates (x, y, z) = Ψ(µ, ν, φ), given by

x = a sinhµ sin ν cosφ,

y = a coshµ cos ν,

z = a sinhµ sin ν sinφ,

(3.3)

where (0,±a, 0) are the coordinates of the foci, φ ∈ [0, 2π] is the polar angle, ν ∈ [0, π] is the
azimuthal angle and a, µ > 0. For M > 0, define the ellipsoid

E(a,M) := {Ψ(µ, ν, φ) : µ < 2M}. (3.4)

Moreover, we need consider the left and the right halves of the set EM translated at the edges
of the neck. Namely, we consider the open sets

Eℓ
ε(a,M) := (E(a,M) ∩ {x < 0})− (ε, 0, 0),

and
Er

ε(a,M) := (E(a,M) ∩ {x > 0}) + (ε, 0, 0).

Note that if M < r0 , where r0 > 0 is given by assumption (H3), we get that Eℓ
ε(a,M) ⊂ Ωℓ

ε ,
and that Er

ε(a,M) ⊂ Ωr
ε . For 0 < m < M , we define the function ξε : R3 → R as

ξε(x) = ξε(x, y, z) :=



α in Ωℓ
ε \ Eℓ

ε(a,M) ,

α+ β

2
− h(x+ ε, y, z) in Eℓ

ε(a,M) ,

α+ β

2
in Nε ,

α+ β

2
+ h(x− ε, y, z) in Er

ε(a,M) ,

β in Ωr
ε \ Er

ε(a,M) ,

(3.5)

where h : E(a,M) \ E(a,m) → R is the solution to the problem
∆h = 0 in E(a,M) \ E(a,m) ,

h =
β − α

2
on ∂E(a,M) ,

h = 0 on ∂E(a,m) .
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Now, our goal is to find the function h explicitly and to estimate, asymptotically, its Dirichlet
energy. We look for the solution in the form h = h(µ). Then the Laplacian in prolate spheroidal
coordinates is given by

∆h =
1

a2(sinh2 µ+ sin2 ν)
(hµµ + (cothµ)hµ) = 0,

or equivalently
(sinhµhµ)µ = 0.

It follows that
hµ =

c

sinhµ
,

and thus
h(µ) = c ln |k tanh(µ/2)|. (3.6)

Enforcing the boundary conditions

h(2M) =
β − α

2
and h(2m) = 0

yields

k = cothm and c =
β − α

2 ln
( tanhM
tanhm

) . (3.7)

Hence, we can write

h(µ) =
(β − α)

2 ln
( tanhM
tanhm

) ln
( tanhµ/2

tanhm

)
.

We are now in position to compute the Dirichlet energy of the function ξε . Indeed, by using
(3.6), we obtain

1

2

∫
E(a,M)\E(a,m)

|∇ξε|2 dx =
1

2

∫
E(a,M)\E(a,m)

|∇h|2 dx

=c2a

∫ π

0

∫ 2π

0

∫ 2M

2m

sin ν

sinhµ
dνdφdµ =

πa(β − α)2

ln

(
tanhM

tanhm

) . (3.8)

In the above expression, there are still two choices that we can make: that of the parameters a
and m . We now want to choose them in such a way that

(Nε ∩ {x = ±ε})◦ ⊂ E(a,m) ∩ {x = 0} ± (ε, 0, 0). (3.9)

To enforce (3.9), we note that (3.3) implies that, for all (x, y, z) ∈ ∂E(a,m) such that x = 0, it
holds

y2

a2 cosh2m
+

z2

a2 sinh2m
= 1. (3.10)

Therefore, choosing a and m to satisfy

a sinhm =
√
2η, a coshm =

√
2δ

guarantees the validity of (3.9).

We now want to get an asymptotic estimate of (3.8), taking into account the fact that all the
regimes in this paper consider the case in which η ≪ δ . By definition a2 = δ2 − η2 , and then
a ≈ δ as ε→ 0. Moreover

tanhm =
η

δ
.

Observe that in our regimes, when δ ≫ η , then m≪ 1 and

ln

(
tanhM

tanhm

)
= ln tanhM − ln tanhm ≈ − ln tanhm = − ln

η

δ
, (3.11)

for ε small enough. This, together with (3.8) implies that, for ε small enough,

1

2

∫
E(a,M)\E(a,m)

|∇ξε|2 dx ≈ πδ(β − α)2

| ln η
δ |

. (3.12)
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Finally, we note that the elliptic competitor just built gives a better upper bound on the
energy of the minimiser uε than the one that could be obtained in [19], with a spherical harmonic
function. Indeed, in the spherical harmonic case, they obtained an upper estimate with a term
of order δ . Therefore, we can notice that

δ

| ln(η/δ)|
≪ δ,

as ε → 0. Thus, we obtained a competitor whose order of energy is asymptotically lower than
the previous one. This is particularly relevant since such a competitor follows the geometry of
our problem, in which the shape of the neck presents the y coordinate way smaller than the z
coordinate, ruled by δ and η respectively.

3.3. Mixed competitor. The idea now, is to mix the affine competitor in the neck, together
with the ellipsoidal just built. The purpose of this new competitor, is to describe whenever the
transition happens simultaneously inside and outside the neck. Consider A,B ∈ R such that
α ⩽ A ⩽ B ⩽ β . Let h : Eℓ(a,M) \ Eℓ(a,m) → R be the solution to

∆w = 0 in Eℓ(a,M) \ Eℓ(a,m),

w = α on ∂Eℓ(a,M),

w = A on ∂Eℓ(a,m).

and g : Er(a,M) \ Er(a,m) → R the solution to
∆w = 0 in Er(a,M) \ Er(a,m),

w = β on ∂Er(a,M),

w = B on ∂Er(a,m).

Recalling (3.5) and (3.3), we define the function ξε : R3 → R as

ξε(x) :=



α in Ωℓ
ε \ Eℓ

ε(a,M),

h(x+ ε, y, z) in Eℓ
ε(a,M) \ Eℓ(a,m),

A in Eℓ
ε(a,M),

B −A

2ε
x+

B +A

2
in Nε,

B in Er
ε(a,M),

g(x− ε, y, z) in Er
ε(a,M) \ Er(a,m),

β in Ωr
ε \ Er

ε(a,M).

(3.13)

We now want to estimate, asymptotically, its energy. Using the same argument used to obtain
(3.6), we can write the explicit solution of the problems above as

h(µ) = cℓ ln |kℓ tanh(µ/2)|, and g(µ) = cr ln |kr tanh(µ/2)|.
We can explicitly obtain cℓ, kℓ, cr, kr ∈ R by imposing the boundary conditions and we get

cℓ =
α−A

ln
( tanhM
tanhm

) , cr =
β −B

ln
( tanhM
tanhm

)
and

kℓ =

exp
(
ln

∣∣∣∣ tanhMtanhm

∣∣∣∣ A

α−A

)
tanhM

kr =

exp
(
ln

∣∣∣∣ tanhMtanhm

∣∣∣∣ B

β −B

)
tanhM

.

Arguing like in (3.8), we get that

1

2

∫
Eℓ

ε(a,M)\Eℓ(a,m)

|∇hε|2 dx =
πa(A− α)2

|ln(η/δ)|
(3.14)
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and

1

2

∫
Er

ε(a,M)\Er(a,m)

|∇gε|2 dx =
πa(B − β)2

| ln(η/δ)|
, (3.15)

as ε→ 0. Therefore, from (3.2), (3.14), and (3.15), we obtain

F (ξε,Ωε) =
πa

| ln(η/δ)|
[
(A− α)2 + (B − β)2

]
+
δη

ε
(B −A)2.

Since η ≪ δ , we have that a ≈ δ . Thus, for ε small enough, we can write

F (ξε,Ωε) ≈
πδ

| ln(η/δ)|
[
(A− α)2 + (B − β)2

]
+
δη

ε
(B −A)2. (3.16)

Now we compute the minimum of the right-hand of (3.16) under the constraint that α ⩽ A ⩽
B ⩽ β . It is possible to see that a solution is in the interior of the admissible region, and thus
the optimal A and B are given by the solution of the system

π

| ln(η/δ)|
(A− α)− η

ε
(B −A) = 0,

π

| ln(η/δ)|
(B − β) +

η

ε
(B −A) = 0,

which are

A =

πα

|ln(η/δ)|
+
η

ε
(α+ β)

π

|ln(η/δ)|
+

2η

ε

and B =

πβ

|ln(η/δ)|
+
η

ε
(α+ β)

π

|ln(η/δ)|
+

2η

ε

. (3.17)

The choice of A and B in (3.17) will be crucial in the various regimes when we will need to
infer the boundary conditions of the rescaled profile at the edge of the neck. In conclusion, from
(3.16), if uε is a local minimiser, we then have

F (uε,Ωε) ⩽
πδ

| ln(η/δ)|
[
(A− α)2 + (B − β)2

]
+
δη

ε
(B −A)2. (3.18)

Finally, notice that the right-hand side of (3.18) has a clear separation between the energetic
contribution of the competitor inside and outside the neck, as well as their orders of the energy.

4. Analysis of the problem in the several regimes

In this section we carry out the rigorous analysis of the asymptotic behaviour of the solution,
obtaining information on its energy and its behaviour inside and close to the neck. To this aim,
define

N := [−1, 1]3,

which is the neck Nε rescaled to size of order 1, that is, under the change of coordinates
(x, y, z) → (x/ε, y/δ, z/η).
We also recall the definition of Hausdorff convergence of sets.

Definition 4.1. We say that a sequence of closed sets (An)n ⊂ R3 converges in the Hausdoff
metric to a closed set A if

lim
n→∞

max

{
sup
x∈A

d(x, An), sup
y∈An

d(y, A)

}
= 0.

Here, d(x, A) denotes the distance between the point x ∈ R3 and the set A . We denote this

convergence by An
H→ A .
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4.1. Super-thin neck. In this regime the parameters are ordered as ε ≫ δ ≫ η . Namely, we
have

lim
ε→0

δ

ε
= 0 and lim

ε→0

η

δ
= 0.

According to the heuristics in Section 2.2, we expect the transition to happen entirely inside the
neck. If uε is a local minimiser of the functional (1.3), the only rescaling that works is

vε(x, y, z) := uε(εx, δy, ηz).

Define Ω̃ε , Ω̃ℓ
ε , and Ω̃r

ε as the rescaled domain Ωε , Ωℓ
ε , and Ωr

ε , respectively. Note that, as
ε→ 0,

R3 \ Ω̃ε
H→ R3 \ Ω∞ ,

where
Ω∞ := Ωℓ

∞ ∪N ∪ Ωr
∞,

with Ωℓ
∞ := {x < −1} and Ωr

∞ := {x > 1} .

Theorem 4.2. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume ε≫ δ ≫ η . Then,

lim
ε→0

ε

δη
F (uε,Ωε) = lim

ε→0

ε

δη
F (uε, Nε) = (β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(εx, δy, ηz).

Then, the following hold:

(i) vεχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3) and vεχΩ̃r

ε
− βχΩ̃r

ε
→ 0 in L6(R3) , as ε→ 0 ;

(ii) There exists v̂ ∈ H1(N) such that vε ⇀ v̂ weakly in H1(N) , as ε→ 0 ;
(iii) It holds that v̂(x, y, z) = v(x) , where v ∈ H1(−1, 1) is the unique minimiser of the

variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) = α, v(1) = β

}
.

In particular, v(x) =
β − α

2
x+

α+ β

2
.

Proof. Step 1: existence of v̂ . Note that, using assumption (H3), for ε > 0 sufficiently small, it
holds that

2N ∩ Ω∞ ⊂ Ω̃ε.

The reason why we take 2N and not only N is because we need the boundary conditions to
converge. We claim that

sup
ε>0

∥vε∥H1(2N∩Ω∞) <∞.

First of all, using the fact that ε≫ δ ≫ η , we get that

∥∇vε∥2L2(2N∩Ω∞) =
ε

δη

∫
2N∩Ω∞

(
(∂xuε)

2 +
δ2

ε2
(∂yuε)

2 +
η2

ε2
(∂zuε)

2
)
dx

⩽
ε

δη
F (uε,Ωε) ⩽ C <∞,

(4.1)

where the first step follows by using a change of variable, while the second from (3.2) with A = α
and B = β . Moreover,∫

2N∩Ω∞

|vε|2 dx =
1

εδη

∫
2Nε∩Ωε

|uε|2 dx ⩽

(
supx∈2Nε∩Ωε

|uε|2
)
|2Nε ∩ Ωε|

εδη
= C.

Thus, we get that, up to a subsequence, vε converges weakly in H1(N) to a function v̂ ∈ H1(N).
The independence of the subsequence will follow from Step 2, where we show that the limit is
the unique solution to a variational problem.

Step 2: limiting problem and behavior inside the neck. We now want to characterize the function
v as the unique solution to a variational problem. We do this in two steps: first, we identify a
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functional that will be minimized, and then we identify the boundary conditions.
We have that

lim inf
ε→0

ε

δη
F (uε,Ωε) ⩾ lim inf

ε→0

ε

δη

(1
2

∫
Nε

|∇uε|2 dx+

∫
Nε

W (uε) dx
)

= lim inf
ε→0

1

2

∫
N

(
(∂xvε)

2 +
ε2

δ2
(∂yvε)

2 +
ε2

η2
(∂zvε)

2
)
dx+ ε2

∫
N

W (vε) dx

⩾ lim inf
ε→0

1

2

∫
N

|∇vε|2 dx ⩾
1

2

∫
N

|∇v|2 dx, (4.2)

where in the last step we used the fact that ε ≫ δ ≫ η . Notice that, from the bound (4.1)
and the fact that ε/η → ∞ and ε/δ → ∞ , we necessarily have that v does not depend on y
and z . Namely, vε converges to a function v̂ ∈ H1(N), of the form v̂(x, y, z) = v(x), where
v ∈ H1(−1, 1). Therefore, from (4.2), we can write

1

2

∫
N

|∇v|2 dx = 2

∫ 1

−1

(v̂′)2 dx ⩾ 2min
{∫ 1

−1

(w′)2 dx : w ∈ H1(−1, 1), w(±1) = v̂(±1)
}

=(v̂(1)− v̂(−1)
)2
, (4.3)

where last step follows by an explicit minimisation.

Now we claim that v̂(−1) = α and v̂(1) = β . We prove the former, since the latter follows
by using a similar argument. The idea (introduced in [19]) is to use the scale-invariant Poincaré
inequality (∫

Ωℓ
ε

|uε − ūε|6 dx
) 1

6

⩽ C
(∫

Ωℓ
ε

|∇uε|2 dx
) 1

2

, (4.4)

where C > 0 and ūε is the average on Ωℓ
ε of uε . Using a change of variable, we estimate (by

neglecting the potential term as in (4.2)) the right-hand side of (4.4) as

εδη

∫
Ω̃ℓ

ε

|vε − v̄ε|6 dx ⩽ C
(δη
ε

∫
Ω̃ℓ

ε

(∂xvε)
2 +

ε2

δ2
(∂yvε)

2 +
ε2

η2
(∂zvε)

2 dx
)3

⩽ C
(δη
ε

)3
(
ε

δη
F (uε,Ωε)

)3

.

Now, using the fact that δη/ε2 → 0 as ε→ 0 together with (4.1), we get that

sup
ε>0

ε

δη
F (uε,Ωε) ⩽ C,

for some C ∈ [0,∞). Thus,∫
Ω̃ℓ

ε

|vε − v̄ε|6 dx ⩽ C
(δη
ε2

)2
(
ε

δη
F (uε,Ωε)

)3

→ 0, (4.5)

as ε → 0. Therefore, vεχΩ̃ℓ
ε
− v̄εχΩ̃ℓ

ε
→ 0 in L6(R3), as ε → 0. We now claim that v̄εχΩ̃ℓ

ε
−

αχΩ̃ℓ
ε
→ 0 in L6(R3), as ε→ 0. Indeed, by definition of local minimiser we have that

||uε − α||L1(Ωℓ
ε)

→ 0,

as ε → 0. Therefore, ūεχΩℓ
ε
− αχΩℓ

ε
→ 0 in L6(R3), which yields that v̄εχΩ̃ℓ

ε
− αχΩ̃ℓ

ε
→ 0 in

L6(R3). Thus, since vε → v̂ strongly in L2(2N ∩ Ω∞) as ε→ 0, we get that v̂(−1) = α .

Step 3: asymptotic behaviour of the energy. From (4.2) and (4.3) we can conclude that

lim inf
ε→0

ε

δη
F (uε,Ωε) ⩾ (β − α)2. (4.6)

On the other hand, denoting by ξε the affine competitor in (3.1), we have that

lim sup
ε→0

ε

δη
F (uε,Ωε) ⩽ lim sup

ε→0

ε

δη
F (ξε, Nε) = (β − α)2. (4.7)

Thus, from (4.6), and (4.7), we get

lim
ε→0

ε

δη
F (uε,Ωε) = (β − α)2.
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In particular, we get that all inequalities in (4.2) are equalities, proving that

lim
ε→0

ε

δη
F (uε,Ωε) = lim

ε→0

ε

δη
F (uε, Nε).

This concludes the proof. □

4.2. Flat-thin neck. In this regime the parameters are ordered as ε ≈ δ ≫ η . Namely, we
have

lim
ε→0

δ

ε
= m ∈ (0,+∞) and lim

ε→0

η

ε
= 0.

In this case, the behaviour of an admissible family of local minimisers is similar to the super-thin
regime and strategy of the proof is similar to that of Theorem 4.2. Therefore, we only highlight
the main differences. Since we expect the transition to happen entirely inside the neck, we
would like to use a rescaling for which the neck Nε transforms in N := [−1, 1]3 . Given a local
minimizer uε of the functional (1.3), the only rescaling that works is

vε(x, y, z) := uε(εx, εy, ηz).

If we rescale in this way, the limiting domain becomes

Ω∞ = Ωℓ
∞ ∪N ∪ Ωr

∞,

where Ωℓ
∞ = {x < −1} and Ωr

∞ = {x > 1} .

Theorem 4.3. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume ε ≈ δ ≫ η . Then,

lim
ε→0

1

η
F (uε,Ωε) = lim

ε→0

1

η
F (uε, Nε) = (β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(εx, εy, ηz).

Then, the following hold:

(i) vεχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3) and vεχΩ̃r

ε
− βχΩ̃r

ε
→ 0 in L6(R3) as ε→ 0 ;

(ii) There exists a function v̂ ∈ H1(N) such that vε ⇀ v̂ weakly in H1(N) as ε→ 0 ;
(iii) It holds that v̂(x, y, z) = v(x) , where v ∈ H1(−1, 1) is the unique minimiser of the

variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) = α, v(1) = β

}
.

In particular, v(x) =
β − α

2
x+

α+ β

2
.

Proof. In the same way as in Theorem 4.2, we can prove that

sup
ε>0

∥∇vε∥2L2(N) ⩽
ε

δη
F (uε,Ωε) ⩽ C <∞. (4.8)

and
sup
ε>0

∥vε∥L2(N) < C.

Therefore, by compactness there exists v ∈ H1(N) such that, up to a subsequence, vε ⇀ v in
H1(N). The independence of the subsequence will follow from the fact that the limit is the
unique solution to a variational problem.
Thus, we can write

lim inf
ε→0

1

η
F (uε, Nε) = lim inf

ε→0

1

2

∫
N

(
(∂xvε)

2 + (∂yvε)
2 +

ε2

η2
(∂zvε)

2
)
dx+ ε2η

∫
N

W (vε) dx

⩾
∫
[−1,1]2

(
(∂xv̂)

2 + (∂y v̂)
2
)
dxdy

⩾ min

{∫
[−1,1]2

(
(∂xw)

2 + (∂yw)
2
)
dxdy : w ∈ H1([−1, 1]2),
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w(±1, y) = v̂(±1, y), ∀y ∈ [−1, 1]

}
, (4.9)

where in the previous to last step we used (4.8) and the fact that ε/η → +∞ . Then we
necessarily have that v does not depend on z . Namely, vε converges to a function v̂ ∈ H1(N),
of the form v̂(x, y, z) = v(x, y), where v ∈ H1([−1, 1]2).
Now, would like to show that the boundary conditions v̂(±1, y) are independent from y . This
is done by acting similarly as in (4.4) and (4.5). Indeed by using the scale-invariant Poincaré
inequality (4.4), we get ∫

Ωℓ
ε

|vε − v̄ε|6 dx ⩽ C
(η
ε

)2(1
η
F (vε,Ωε)

)3

.

From (4.8) and the fact that η/ε→ 0 as ε→ 0 we can conclude that v = α on Ωℓ
∞ and v = β

on Ωr
∞ , independently on y . Therefore, from (4.9) we get

lim inf
ε→0

1

η
F (uε, Nε) ⩾ min

{∫
[−1,1]2

(
(∂xw)

2 + (∂yw)
2
)
dxdy : w ∈ H1([−1, 1]2),

w(−1, y) = α, w(1, y) = β, ∀y ∈ [−1, 1]

}

⩾ min

{∫
[−1,1]2

(∂xw)
2 dxdy : w ∈ H1([−1, 1]2),

w(−1, y) = α, w(1, y) = β, ∀y ∈ [−1, 1]

}
= (β − α)2, (4.10)

where the last step follows by an explicit computation. On the other hand, denoting by ξε the
affine competitor in (3.1), we have that

lim sup
ε→0

1

η
F (uε,Ωε) ⩽ lim sup

ε→0

1

η
F (ξε, Nε) = (β − α)2. (4.11)

Finally, using (4.10) (4.11), we get

lim
ε→0

1

η
F (uε,Ωε) = lim

ε→0

1

η
F (uε, Nε) = (β − α)2.

This concludes the proof. □

4.3. Interlude: convergence of Neumann problems. In this short interlude, we recall a
convergence result for solutions to elliptic problems with Neumann boundary conditions that will
be crucial to carry out the analysis of the asymptotic behaviour of the rescaled profiles outside
the neck. The result is the following. For a proof, we refer to [22, Proposition 6.2] (see also
[10, 12]).

Theorem 4.4. Let (Ωε)ε ⊂ R3 be a sequence of open sets such that, as ε→ 0 ,

χΩε
→ χΩ∞ in L1(R3) and R3 \ Ωε

H→ R3 \ Ω∞ locally,

for some open set Ω∞ . Let p > 2 , and let (fε)ε ⊂ Lp
loc(R3) be such that, as ε→ 0 ,

fεχΩε → f∞χΩ∞ in Lp
loc(R

3),

for some f∞ ∈ Lp
loc(R3) . Let (uε)ε ⊂W 2,p(Ωε) be the weak solution to{

△uε = fε in Ωε,

∂νuε = 0 on ∂Ωε.

Assume that (uεχΩε
)ε is locally equi-bounded in L∞(R3) . Then, up to a subsequence,

vεχΩ̃ε
→ v̂χΩ∞ in Lq

loc(R
3) for all q ∈ [1,∞),

as ε→ 0 , and
∇vεχΩε → ∇v̂χΩ∞ in L2

loc(R3;R3),
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as ε→ 0 , where v̂ ∈W 2,p(Ω∞) is the weak solution to{
△û = f∞ in Ω∞,

∂ν û = 0 on ∂Ω∞.

Moreover, uε → û in W 2,p
loc (Ω∞) , as ε→ 0 .

Remark 4.5. The reason why in the above result the convergence of the complements of the
open sets Ωε is required, and the fact that the limiting set has to be open, is in order to ensure
that at each point of the limiting set there is only one side where the limiting set is. For instance,
we want to avoid situations of the type

Ωε := {(cos θ, sin θ) : θ ∈ (0, 2π − ε)},
or of the type

Ωε := (0, 1)2 ∪ ([1, 2)× (−ε, ε)) .
In both cases, the limiting set has part of the topological boundary that creates troubles in defining
the limiting PDE.

4.4. Window thick regime. Here we consider the scaling of the energy in the window thick
regime δ ≫ η ≫ ε , namely where

lim
ε→0

η

δ
= 0 and lim

ε→0

η

ε
= +∞.

Since the ellipsoidal competitor outside the neck provides an energy whose order is lower than
the energy of the affine competitor in the neck, we expect the transition happening outside the
neck. If uε is a local minimiser of the functional (1.3), the only rescaling that allows us to both
see a nice limiting space, and to use the scale-invariant Poincaré inequality (4.4) is

vε(x, y, z) := uε(δx, δy, δz).

Using this rescaling, the limiting domain becomes

Ω̃∞ = {x < 0} ∪ ({0} × [−1, 1]× {0}) ∪ {x > 0}.
However, note that

R3 \ Ω̃ε
H→ R3 \ Ω∞ ,

where

Ω̃ε :=
1

δ
Ωε , Ω∞ := {x < 0} ∪ {x > 0}.

We are now in position to prove the main result of this section.

Theorem 4.6. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume that δ ≫ η ≫ ε . Then,

lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε \Nε) = π(β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(δx, δy, δz).

Then, there exists R > 0 such that the following statements hold:

(i) vε → α+β
2 uniformly on BR , as ε→ 0 ;

(ii) There exists v̂ ∈ H1
loc(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ strongly in H1
loc(R3) , as ε→ 0 ;

(iii) The function v̂ is the unique minimiser of the variational problem

min

{
1

2

∫
Ω∞

|∇v|2 dx : v ∈ A
}
,

where

A :=
{
v ∈ H1

loc(Ω∞), v − αχΩℓ
∞

− βχΩr
∞

∈ L6(Ω∞), v =
α+ β

2
on BR ∩ Ω∞

}
,

and Ωℓ
∞ := {x < 0} , and Ωr

∞ := {x > 0} .
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Proof. Step 1: lower bound of the energy outside the neck. We claim that there exist m1,m2 ∈ R
such that

lim inf
ε→0

| ln(η/δ)|
δ

F (uε,Ωε) ⩾ 2π
[
(m1 − α)2 + (m2 − β)2

]
. (4.12)

The idea is to bound from below the energy of uε with that of an harmonic function defined in
the region between two suitable ellipsoids, one on the left and one of the right of the neck. For
a, s > 0, consider the ellipsoid

E(a, s) := {Ψ(µ, ν, φ) : µ < s},
where Ψ denotes the prolate ellipsoidal coordinates defined in (3.3). We define

Eℓ
ε(a, s) := (E(a, s) ∩ {x < 0}) + (0, 0,−ε),

Er
ε(a, s) := (E(a, s) ∩ {x > 0}) + (0, 0, ε).

We claim that it is possible to find m1,m2 ∈ R satisfying the following property. Fix a and M
such that E(a,M) ⊂ B2R , and define

aε := δa, Mε := δM.

Then, for any γ, µ > 0, there exists ε0 > 0 such that

m1 − µ ⩽ uε ⩽ m1 + µ on ∂Eℓ(aε,Mε), (4.13)

m2 − µ ⩽ uε ⩽ m2 + µ on ∂Er(aε,Mε), (4.14)

α− γ ⩽ uϵ ⩽ α+ γ on ∂Eℓ(aε, ρ), (4.15)

β − γ ⩽ uε ⩽ β + γ on ∂Er(aε, ρ), (4.16)

and

Nε ∩ {x = −ε} ⊂ Eℓ(aε,Mε) ∩ {x = −ε}, Nε ∩ {x = ε} ⊂ Er(aε,Mε) ∩ {x = ε}. (4.17)

for all ε < ε0 . The claims (4.13) and (4.14) will be proved in Step 1.1, while (4.15) and (4.16)
in Step 1.2.

We now show how to conclude. Fix µ, γ > 0. Then, for ε < ε0 , we have that

F (uε,Ωε \Nε) ⩾
1

2

∫
Eℓ(aε,ρ)\Eℓ(aε,Mε)

|∇uε|2 dx+
1

2

∫
Er(aε,ρ)\Er(aε,Mε)

|∇uε|2 dx

⩾ inf
{1

2

∫
Eℓ(aε,ρ)\Eℓ(aε,Mε)

|∇v|2 dx : v ∈ H1(Eℓ(aε, ρ) \ Eℓ(aε,Mε)),

v ⩽ m1 + µ on ∂Eℓ(aε,Mε), v ⩾ α− γ on ∂Eℓ(aε, ρ)
}

+ inf
{1

2

∫
Er(aε,ρ)\Er(aε,Mε)

|∇v|2 dx : v ∈ H1(Er(aε, ρ) \ Er(aε,Mε)),

v ⩽ m2 + µ on ∂Er(aε,Mε), v ⩾ β − γ on ∂Er(aε, ρ)
}

= inf
{1

2

∫
Eℓ(aε,ρ)\Eℓ(aε,Mε)

|∇v|2 dx : v ∈ H1(E(aε, ρ)
ℓ \ Eℓ(aε,Mε)),

v = m1 + µ on ∂Eℓ(aε,Mε), v = α− γ on ∂Eℓ(aε, ρ)
}

+ inf
{1

2

∫
Er(aε,ρ)\Er(aε,Mε)

|∇v|2 dx : v ∈ H1(E(aε, ρ)
r \ Er(aε,Mε)),

v = m2 + µ on ∂Er(aε,Mε), v = β − γ on ∂Er(aε, ρ)
}

=: Lε +Rε. (4.18)
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We now want to compute Lε and Rε . We show the argument for Lε . The result for Rε will
follow by using the same reasoning. Arguing as in Section 3.2, we get that the solution to the
problem defining Lε is given, in prolate coordinates, by

w(µ) = c ln |k tanh(µ/2)| ,
where (see (3.7))

k = coth(Mε), c =
m1 + µ− α+ γ

ln
( tanh(ρ)

tanh(Mε)

) .
In particular, (see (3.8)), we get that

Lε =
πaε(m1 + µ− α+ γ)2

ln
( tanh(ρ)

tanh(Mε)

) . (4.19)

Now, we want to understand the asymptotic behaviour of Lε . First, we want to compute the
asymptotic behaviour of the denominator on the right-hand side of (4.19). Let Mε , and aε be
such that

aε sinhMε = 2η, aε coshMε = 2δ.

In such a way, we have that (4.17) holds. Note that on ∂Eℓ(aε,Mε) ∩ {x = −ε} we have

y2

a2 cosh2(Mδ)
+

z2

a2 sinh2(Mδ)
= 1,

which yields that

tanhMε =
η

δ
, a2ε = 4δ2 − 4η2 ≈ 4δ2. (4.20)

As consequence, we get the following asymptotic estimate

1

aε
ln
( tanh(ρ)

tanh(Mδη)

)
=

1

aε

(
ln tanh ρ− ln tanhMδη

)
≈ |ln(δ/η)|

2δ
. (4.21)

Therefore, from (4.19), (4.21), since γℓε → 0 and by arbitrariness of γ , we get

lim inf
ε→0

|ln(δ/η)|
δ

Lε ⩾ 2π(m1 − α)2.

In a similar way, we obtain that

lim inf
ε→0

|ln(δ/η)|
δ

Rε ⩾ 2π(m2 − β)2.

This proves the claim.

Step 1.1: boundary conditions on the internal ellipsoid. Here, we want to prove the validity of
(4.13) and of (4.14). We want to understand the limiting behaviour of vε . The idea is to obtain
such information by looking at the limit of the PDE satisfied by the limit of the sequence (vε)ε .
First, we notice that since uε is a critical point of the energy Fε , we have that uε satisfies the
Euler-Lagrange equation ∫

Ωε

∇uε · ∇φdx−
∫
Ωε

W ′(uε)φdx = 0,

for all φ ∈ H1(Ωε). We claim that∫
Ω̃ε

∇vε · ∇ψ dx = δ2
∫
Ω̃ε

W ′(vε)ψ dx, (4.22)

for every ψ ∈ H1(Ω̃ε). Indeed, fix φ ∈ H1(Ωε). Using the change of variable (δx′, δy′, δz′) =
(x, y, z), we get ∫

Ωε

∇uε · ∇φdx = δ3
∫
Ω̃ε

1

δ2
∇vε · ∇ψ dx′, (4.23)

where ψ(x, y, z) := φ(δx, δy, δz). Moreover,∫
Ωε

W ′(uε)φdx = δ3
∫
Ω̃ε

W ′(vε)ψ dx′.
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This proves that vε is a weak solution to
∆vε = δ2W ′(vε) in Ω̃ε ,

∂vε
∂ν

= 0 on ∂Ω̃ε ,

as desired.

Now we want to obtain the limiting equation. Since, by assumption, (uε)ε is uniformly
bounded in L∞ , the sequence fε := δ2W ′(vε)χΩ̃ε

converges strongly in Lp
loc(R3) to f := 0, for

all p ⩾ 1. Moreover,

R3 \ Ω̃ε
H−→ R3 \ Ω∞ , as ε→ 0.

Thus, using Theorem 4.4, we get that there exists v̂ ∈W 2,p(Ω∞), such that, up to a subsequence,
it holds

vεχΩ̃ε
→ v̂χΩ∞ in Lq

loc(R
3) for all q ∈ [1,∞),

and
∇vεχΩ̃ε

→ ∇v̂χΩ∞ in L2
loc(R3;R3),

as ε→ 0. This proves (ii). In particular, if we fix R > 1, we get that∫
Ω∞∩B2R

|∇v̂|2 dx = lim
ε→0

∫
Ω̃ε∩B2R

|∇vε|2 dx = 0, (4.24)

where we used (4.22) with vε as a test function, together with the fact that ∥W ′(vε)vε∥L∞ is
uniformly bounded in ε . Therefore, recalling that Ω∞ has two disjoint connected components,
we get that there exist m1,m2 ∈ R such that

vε → m1 locally uniformly in Ω∞ ∩B2R ∩ {x < 0},
and

vε → m2 locally uniformly in Ω∞ ∩B2R ∩ {x > 0},
as ε→ 0, Moreover, for any choice of a and M such that E(a,M) ⊂ B2R , we get that

vε → m1 locally uniformly in Eℓ(a,M)

and
vε → m2 locally uniformly in Er(a,M),

as ε→ 0, Going back to the original coordinates gives us the desired result. Step 1.2: boundary
conditions on the external ellipsoid. Note that by assumption, we get that uε is a weak solution
to 

∆uε =W ′(uε) in Ω̃ε ,

∂uε
∂ν

= 0 on ∂Ω̃ε .

Moreover, W ′(uε)χΩε
∈ Lp

loc(R3) for all p ∈ [1,∞] , since by assumption, (uε)ε is uniformly
bounded in L∞ . Therefore, arguing as in the previous step, and using Sobolev embeddings, we
get that uεχΩℓ

ε
converges uniformly to α and uεχΩr

ε
converges uniformly to β . In particular,

let r0 > 0 be given by assumption (H3). Fix 0 < ρ < r0 and define

Eℓ
ε,ρ := Eρ ∩ {x < −ε} and Er

ε,ρ := Eρ ∩ {x > ε}.
Then, from the above argument, we get that

α− γℓε <uε < α+ γℓε on ∂Eℓ
ε,ρ ,

β − γrε <uε < β + γrε on ∂Er
ε,ρ ,

as ε→ 0, where

γℓε := ||uε − α||L∞(Eℓ
ε,ρ)

→ 0 and γrε := ||uε − β||L∞(Er
ε,ρ)

→ 0.

Step 2: energy estimate outside the neck. Consider the function f : R× R → R given by

f(s, t) := 2π[(s− α)2 + (t− β)2].
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Then, the minimum of f over the set α ⩽ s ⩽ t ⩽ β is defined as

f

(
β + α

2
,
β + α

2

)
= π(β − α)2.

Thus, from (4.12), we obtain that

lim inf
ε→0

| ln(η/δ)|
δ

F (uε,Ωε \Nε) ⩾ π(β − α)2.

Let ξε be the function defined in (3.5). Then, by (3.7), we get that

lim sup
ε→0

| ln(η/δ)|
δ

F (ξε,Ωε \Nε) = π(β − α)2.

Thus, from we obtain that

lim
ε→0

|ln(δ/η)|
δ

F (uε,Ωε \Nε) = π(β − α)2.

In particular, this yields that m1 = m2 , which proves (i). Moreover, by noticing that all the
inequalities in (4.18) are equalities, we get that

lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε \Nε).

Step 3: limiting problem. First, we prove that v̂ is an admissible competitor for the problem in
(iii). From (i), we know that

v̂ =
α+ β

2
, on BR ∩ Ω∞ .

We now prove that it satisfies also the boundary conditions at infinity. Using the scale-invariant
Poincaré inequality (4.4), we get that

∥vε − vε∥L6(Ω̃ε)
⩽ C∥∇vε∥L2(Ω̃ε)

,

which, together with the fact that vε → αχΩℓ
∞

+ βχΩr
∞

∈ L6(Ω∞), as ε → 0, yields that v̂ is

an admissible competitor for the problem in (iii).

Finally, we prove that v̂ solves the minimisation problem in (iii). The argument is similar to
that of Step 3 of the proof of [19, Theorem 4.1]. Fix M > |α|, |β| . We can assume, without loss
of generality, that every function φ ∈ A is such that ∥φ∥L∞(Ω∞) ⩽ M . Indeed, given φ ∈ A ,
by considering the truncation φ̃ := (φ ∧M) ∨ (−M) we get that φ̃ ∈ A and

1

2

∫
Ω∞

|∇φ̃|2 dx ⩽
1

2

∫
Ω∞

|∇φ|2 dx.

Thus, let us take φ ∈ A with ∥φ∥L∞(Ω∞) ⩽M . Define the function φε : Ωε → R as

φε(x, y, z) := φ
(x
δ
,
y

δ
,
z

δ

)
.

Then, there exist constants C, C̃ > 0, such that, for all ε > 0 it holds

∥φε − u0,ε∥L2(Ωε) ⩽ C∥φε − u0,ε∥L6(Ωε) = C̃δ
1
2 .

Therefore, for ε sufficiently small, we get that φε is an admissible competitor for the minimisa-
tion problem solved by uε . Thus,

F (uε,Ωε) ⩽ F (φε,Ωε). (4.25)

Note that

F (uε,Ωε) =
δ

2

∫
Ω̃ε

|∇vε|2 dx+

∫
Ωε

W (uε) dx,

and (recall that Ω̃ε ⊂ Ω∞ )

F (φε,Ωε) =
δ

2

∫
Ω̃ε

|∇φ|2 dx+

∫
Ωε

W (φε) dx.

Thus, taking the liminf on both sides of (4.25), and using the fact that φε, uε converges in L2

to zeros of W , we get

1

2

∫
Ω∞

|∇v̂|2 dx ⩽ lim inf
ε→0

F (uε,Ωε) ⩽ lim inf
ε→0

F (φε,Ωε) =
1

2

∫
Ω∞

|∇φ|2 dx,
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proving that that v̂ solves the claimed minimisation problem. This concludes the proof. □

Remark 4.7. We highlight that, from Step 1.1 of the proof (see (4.24)), it follows that the
transition happens outside any ball of radius δ around the neck.

4.5. Narrow thick regime. Here we consider the scaling of the energy in the narrow thick
regime δ ≫ ε ≈ η , namely when

lim
ε→0

η

δ
= 0 and lim

ε→0

η

ε
= l ∈ (0,+∞).

Since the ellipsoidal competitor outside the neck provides an energy whose order is lower than
the energy of the affine competitor in the neck, we expect the transition happening outside the
neck. Denoting by uε a local minimiser of the functional (1.3), the only rescaling that allows us
to both see a nice limiting space, and to use the rescaled Poincaré inequality is

vε(x, y, z) := uε(δx, δy, δz).

Using this rescaling, the limiting domain becomes

Ω̃∞ = {x < 0} ∪ ({0} × [−1, 1]× {0}) ∪ {x > 0}.
However, note that, as ε→ 0,

R3 \ Ω̃ε
H→ R3 \ Ω∞ ,

where

Ω̃ε :=
1

δ
Ωε, Ω∞ = {x < 0} ∪ {x > 0}.

The same argument used in the proof of Theorem 4.6 yields the following result, therefore we
omit the proof.

Theorem 4.8. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume that δ ≫ ε ≈ η . Then,

lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε \Nε) = π(β − α)2.

Moreover, for ε > 0 let vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(δx, δy, δz).

Then, there exists R > 0 such that the following hold:

(i) vε → α+β
2 uniformly on BR , as ε→ 0 ;

(ii) There exists v̂ ∈ H1
loc(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ strongly in H1
loc(R3) , as ε→ 0 ;

(iii) The function v̂ is the unique minimiser of the variational problem

min

{
1

2

∫
Ω∞

|∇v|2 dx : v ∈ H1
loc(Ω∞), v − αχΩℓ

∞
− βχΩr

∞
∈ L6(Ω∞),

v =
α+ β

2
on BR ∩ Ω∞

}
,

where Ωℓ
∞ := {x < 0} , and Ωr

∞ := {x > 0} .

4.6. Letter-box regime. We now consider the regime in which δ ≫ ε≫ η , namely when

lim
ε→0

δ

ε
= +∞ and lim

ε→0

η

δ
= 0.

In this regime, the transition will happen all inside, all outside, or everywhere, depending on the
parameter

ℓ := lim
ε→0

δη

ε

|ln η/δ|
δ

. (4.26)

In particular, we will prove that if ℓ ∈ (0,+∞), then the transition happens everywhere, while
if ℓ = 0 then transition occurs all inside and if ℓ = +∞ all outside.
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4.6.1. Critical letter-box regime. This sub-regime, corresponds to the case ℓ ∈ (0,+∞). We
capture the transition in the bulk by applying a similar argument to the one in Theorem 4.6, in
which around the neck, the rescaled profile vε converges to the average of the two phases, namely
(α + β)/2. In the critical letter-box regime we have instead that the rescaled profile converges
to different constants m1 on {x < 0} and m2 on {x > 0} . Once we have this information, we
can understand how to describe the transition in the neck, by taking into account the fact that
we know the boundary conditions. Then, a similar technique used in Theorem 4.2 applies.

Theorem 4.9. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume that δ ≫ ε≫ η , and that

ℓ := lim
ε→0

δη

ε

|ln(η/δ)|
δ

∈ (0,+∞).

Then,

lim
ε→0

ε

δη
F (uε,Ωε) =

|ln(η/δ)|
δℓ

F (uε,Ωε) =
π(β − α)2

π + ℓ
. (4.27)

In particular

lim
ε→0

ε

δη
F (uε, Nε) =

π2(β − α)2

(π + ℓ)2
,

and

lim
ε→0

|ln(η/δ)|
δ

F (uε,Ωε \Nε) =
πℓ2(β − α)2

(π + ℓ)2
.

Moreover:

(i) Consider the rescaled profile wε : Ωε → R defined as

wε(x, y, z) := uε(εx, δy, ηz), (4.28)

where Ωε is the rescaled domain of Ωε . Let us assume that wε ⇀ ŵ in H1(N) , for
some ŵ ∈ H1(N) . Then, ŵ(x, y, z) = w(x) where w ∈ H1([−1, 1]) is the unique
minimiser of the variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) =
πα+

(α+ β

2

)
ℓ

π + ℓ
,

v(1) =
πβ +

(α+ β

2

)
ℓ

π + ℓ

}
;

(ii) Let

Ω̃ε :=
1

δ
Ωε, Ω∞ := {x < 0} ∪ {x > 0}.

Define the rescaled profile vε ∈ H1(Ω̃ε) as

vε(x, y, z) := uε(δx, δy, δz). (4.29)

Then, there esists v̂ ∈ H1(Ω∞) such that vεχΩ̃ε
→ v̂χΩ∞ strongly in H1

loc(R3) as
ε→ 0 , where v̂ is the solution of the minimisation problem

min

{
1

2

∫
Ω∞

|∇v|2 dx : v ∈ H1(Ω∞), v − αχ{x<0} − βχ{x>0} ∈ L6(Ω∞),

v =
πα+

(α+ β

2

)
ℓ

π + ℓ
on BM ∩ {x < 0},

v =
πβ +

(α+ β

2

)
ℓ

π + ℓ
on BM ∩ {x > 0}

}
,

for some M ⩾ 2 .
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Proof. First of all, note that, using (3.18) and (4.26), for any given constants A,B ∈ R with
A ⩽ B , we have

|ln(η/δ)|
δ

F (u,Ωε) ⩽ π
[
(A− α)2 + (B − β)2

]
+
δη

ε

|ln(η/δ)|
δ

(B −A)2. (4.30)

Therefore, for every λ > 0 there exists ε0 > 0 such that for every ε < ε0 we have

|ln(η/δ)|
δ

F (u,Ωε) ⩽ π
[
(A− α)2 + (B − β)2

]
+ (ℓ+ λ)(B −A)2. (4.31)

Step 1: lower bound of the energy in the bulk. The same strategy used in Theorem 4.6, in which
we obtained the boundary conditions at the edge of the neck, applies.

Consider the rescaling vε ∈ H1(Ω̃ε) defined in (4.29) and the limiting domain Ω∞ . By following
the strategy in Step 1 of Theorem 4.6 we obtain that there is R > 0 and v̂ ∈ H1(Ω∞) such
that vεχΩ̃ε

→ v̂χΩ∞ in H1
loc(R3) and that v̂ is constant on each connected component of

({x < 0} ∪ {x > 0}) ∩BR . In other words, there are m1,m2 ∈ R such that

v̂|BR
=

m1 if x < 0,

m2 if x > 0.

Therefore, we can show that the following lower bound estimate holds

lim inf
ε→0

|ln(η/δ)|
δ

F (uε,Ωε) ⩾ 2π
[
(m1 − α)2 + (m2 − β)2

]
. (4.32)

Step 2: lower bound of the energy in the neck. From the previous step, we infer that for any
µ > 0, there exists ε1 > 0 such that, for every ε < ε1 ,

m1 − µ ⩽ uε ⩽ m1 + µ on ∂Eℓ(aε,Mε),

m2 − µ ⩽ uε ⩽ m2 + µ on ∂Er(aε,Mε),

for a suitable ellipsoid E(aε,Mε). From that, we obtain a lower bound of the energy in the neck.
Indeed,

ε

2δη

∫
Nε

|∇uε|2 dx ⩾ inf
{1

2

∫
Nε

|∇v|2 dx : v ∈ H1(Nε),

v ⩾ m1 − µ on {x = −ε} and v ⩽ m2 + µ on {x = ε}
}

⩾ inf
{1

2

∫
Nε

|∇v|2 dx : v ∈ H1(Nε),

v = m1 − µ on {x = −ε} and v = m2 + µ on {x = ε}
}

=
(
m1 −m2 − 2µ

)2
, (4.33)

where in the last step we used the fact that the minimiser of the above minimisation problem is
given by the affine function.

Step 3: limit of the energy. By putting together (4.32), (4.33) and making use of (4.26), we
obtain

lim inf
ε→0

|ln(η/δ)|
2δ

∫
Ωε

|∇uε|2 dx ⩾ lim inf
ε→0

|ln(η/δ)|
2δ

∫
Ωℓ

ε∪Ωr
ε

|∇uε|2 dx

+ lim inf
ε→0

|ln(η/δ)|
2δ

∫
Nε

|∇uε|2 dx

⩾ 2π
[
(m1 − α)2 + (m2 − β)2

]
+ ℓ(m1 −m2 − 2µ)2. (4.34)

On the other hand, from (4.31), we have

2π
[
(m1 − α)2 + (m2 − β)2

]
+ (ℓ+ λ)

(
m1 −m2

)2
⩾ lim sup

ε→0

|ln(η/δ)|
2δ

∫
Ωε

|∇uε|2 dx.
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By letting µ, λ→ 0 in the above two inequalities, we obtain

lim
ε→0

|ln(η/δ)|
2δ

∫
Ωε

|∇uε|2 dx = 2π
[
(m1 − α)2 + (m2 − β)2

]
+ ℓ(m1 −m2)

2. (4.35)

The right-hand side is minimized for

m1 =
πα+

(α+ β

2

)
ℓ

π + ℓ
and m2 =

πβ +
(α+ β

2

)
ℓ

π + ℓ
, (4.36)

which gives

lim
ε→0

ε

δη
F (uε,Ωε) =

π(β − α)2

π + ℓ
.

In particular, by noticing that all the inequalities in (4.32), (4.33), and (4.34) are equalities, we
get

lim
ε→0

ε

δη
F (uε, Nε) =

π2(β − α)2

(π + ℓ)2
,

and

lim
ε→0

|ln(η/δ)|
δ

F (uε,Ωε \Nε) =
πℓ2(β − α)2

(π + ℓ)2
.

Step 4: limiting problems. Now we investigate the variational problem that the rescalings vε ,
defined in (4.29), in the bulk and wε , defined in (4.28), in the neck satisfy asymptotically.

Step 4.1: limiting problem in the neck. By acting like Step 1.1 of Theorem 4.6, let R > 0 be
such that, [as ε→ 0,]

uε → m1 uniformly on BδR ∩ {x ⩽ −ε},

uε → m2 uniformly on BδR ∩ {x ⩾ ε},
with m1,m2 defined in (4.36). In particular, uε has asymptotic boundary conditions ad the
edge of the neck m1 and m2 respectively. Using the fact that δ ≫ ε≫ η , it follows that, if we
consider the rescaling (4.28),

wε → m1 uniformly on {x = −1} × [−1, 1]2,

wε → m2 uniformly on {x = 1} × [−1, 1]2,
(4.37)

as ε → 0, which gives us the asymptotic boundary conditions at the edge of the neck satisfied
by the limiting profile. By assumption, there exists ŵ ∈ H1(N) such that wε ⇀ ŵ in H1(N)
as ε → 0 and, from (4.37), ŵ is an admissible competitor for the variational problem in (i).
Moreover,

(m1 −m2)
2 ⩾

ε

2δη
lim inf
ε→0

∫
Nε

|∇uε|2 dx

= lim inf
ε→0

1

2

∫
N

(
(∂xwε)

2 +
ε2

δ2
(∂ywε)

2 +
ε2

η2
(∂zwε)

2
)
dx. (4.38)

Since ε/η → ∞ , we have that ŵ do not depend on the variable z and since we know that
wε ⇀ ŵ we have, from (4.38), that

(m1 −m2)
2 ⩾ lim inf

ε→0

1

2

∫
N

(∂xwε)
2 dx =

∫
[−1,1]2

(∂xŵ(x, y))
2 dxdy

=

∫ 1

−1

∫ 1

−1

(∂xŵ(x, y))
2 dxdy ⩾

1

2

∫ 1

−1

∣∣∣∣∫ 1

−1

∂xŵ(x, y) dx

∣∣∣∣2 dy
=

1

2

∫ 1

−1

∣∣ŵ(1, y)− ŵ(−1, y)
∣∣2dy

= (m1 −m2)
2,
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where in the second inequality we used Jensen inequality. Therefore, we conclude that ŵ(x, y, z) =
w(x) for w ∈ H1([−1, 1]) and w solves the variational problem in (i).

Step 4.2: limiting problem. We use a similar argument to the one employed in Step 3 of Theorem
4.6 applies. More specifically, v̂ is admissible competitor for the problem in (ii) and

v̂|BR∩Ω∞ =


πα+

(α+ β

2

)
ℓ

π + ℓ
on {x < 0},

πβ +
(α+ β

2

)
ℓ

π + ℓ
on {x > 0}.

By using the rescaled Poincaré inequality, we get that

∥vε − vε∥L6(Ω̃ε)
⩽ C∥∇vε∥L2(Ω̃ε)

.

In analogy with Step 2 of Theorem 4.2 we get vε → αχΩℓ
∞

+ βχΩr
∞

∈ L6(Ω∞), as ε → 0.
Finally, by applying the last part of Step 3 of Theorem 4.6, we have that v̂ solves the variational
problem in (ii). □

Remark 4.10. Note that in this case, we do not have compactness of the rescaled profile wε

inside the neck. This is due to the fact that the only rescaling that allows us to see the neck at
scale one does not give a uniform bound on the gradient of the rescaled profile (in particular, the
derivative with respect to the variable y cannot be bounded).

We now investigate the remaining two sub-regimes.

4.6.2. Super-critical Letter-box regime. In this sub-regime, we have

ℓ = lim
ε→0

δη

ε

|ln(η/δ)|
δ

= +∞.

In this case, we recover the same result as in Theorem 4.6.

Theorem 4.11. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume that δ ≫ ε≫ η and that ℓ = +∞ . Then,

lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε \Nε) = π(β − α)2.

Moreover, let

Ω̃ε :=
1

δ
Ωε, Ω∞ := {x < 0} ∪ {x > 0}.

Define the rescaled profile vε : Ω̃ε → R be defined as

vε(x, y, z) := uε(δx, δy, δz).

Then, there exists R > 0 such that the following hold:

(i) vε → α+β
2 uniformly on BR , as ε→ 0 ;

(ii) There exists v̂ ∈ H1
loc(Ω∞) such that vεχΩ̃ε

→ v̂χΩ∞ strongly in H1
loc(R3) , as ε→ 0 ;

(iii) The function v̂ is the unique minimizer of the variational problem

min

{
1

2

∫
Ω∞

|∇v|2 dx : v ∈ A
}
,

where

A :=
{
v ∈ H1

loc(Ω∞), v − αχΩℓ
∞

− βχΩr
∞

∈ L6(Ω∞), v =
α+ β

2
on BR ∩ Ω∞

}
,

and Ωℓ
∞ := {x < 0} , and Ωr

∞ := {x > 0} .

Proof. The proof follows the ones for Theorems 4.9 and 4.6.

Step 1: bound of the energy. For any given constants A,B > 0 with A ⩽ B , we have

|ln(η/δ)|
δ

F (uε) ⩽ π
[
(A− α)2 + (B − β)2

]
+
δη

ε

|ln(η/δ)|
δ

(B −A)2.
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Since

lim
ε→0

δη

ε

|ln(η/δ)|
δ

= +∞,

the only way to get that the right-hand side of the above inequality is bounded uniformly in ε ,
is to choose A = B . This gives the estimate

|ln(η/δ)|
δ

F (uε) ⩽ π[(A− α)2 + (A− β)2].

Step 2. Lower bound of the energy. From (4.35), we get

lim inf
ε→0

|ln(η/δ)|
2δ

∫
Ωε

|∇uε|2 dx ⩾ lim inf
ε→0

|ln(η/δ)|
2δ

∫
Ωℓ

ε∪Ωr
ε

|∇uε|2 dx

+ lim inf
ε→0

|ln(η/δ)|
2δ

∫
Nε

|∇uε|2 dx

⩾ lim inf
ε→0

[
2π

[
(m1 − α)2 + (m2 − β)2

]
+

|ln(η/δ)|
δ

δη

ε
(m1 −m2)

2
]
.

Therefore, as in Theorem 4.6, we have an optimality condition on m1 and m2 , which, together
with (4.6.2), leads to

A = m1 = m2 =
α+ β

2
.

Therefore

lim
ε→0

|ln(η/δ)|
δ

F (uε,Ωε) = lim
ε→0

| ln(η/δ)|
δ

F (uε,Ωε \Nε) = π(β − α)2.

The rest of the proof is identical to the one in Theorems 4.6 and 4.9 and we obtain the desired
result. □

4.6.3. Sub-critical Letter-box regime. In this sub-regime, we have

ℓ = lim
ε→0

δη

ε

|ln(η/δ)|
δ

= 0.

In this case, we recover the same result as in Theorem 4.2.

Theorem 4.12. Let (uε)ε ⊂ H1(Ωε) be an admissible family of local minimisers as in Definition
2.2. Assume that δ ≫ ε≫ η and that ℓ = 0 . Then,

lim
ε→0

ε

δη
F (uε,Ωε) = lim

ε→0

ε

δη
F (uε, Nε) = (β − α)2.

Define the rescaled profile vε : Ωε → R as

vε(x, y, z) := uε(εx, δy, ηz),

where Ωε is the rescaled domain of Ωε . Then the following hold:

(i) vεχΩ̃ℓ
ε
− αχΩ̃ℓ

ε
→ 0 in L6(R3) and vεχΩ̃r

ε
− βχΩ̃r

ε
→ 0 in L6(R3) , as ε→ 0 ;

(ii) There exists v̂ ∈ H1(N) such that vε ⇀ v̂ weakly in H1(N) , as ε→ 0 ;
(iii) It holds that v̂(x, y, z) = v(x) , where v ∈ H1(−1, 1) is the unique minimizer of the

variational problem

min

{
1

2

∫ 1

−1

|v′|2 dx : v ∈ H1(−1, 1), v(−1) = α, v(1) = β

}
,

In particular, v(x) =
β − α

2
x+

α+ β

2
.

Proof. The proof is an adaptation of Theorem 4.11 and we remark only the differences. Regard-
ing the bound of the energy, we have that for any given constants A,B > 0 with A ⩽ B , we
have

ε

δη
F (uε,Ωε) ⩽ π

ε

δη

δ

|ln(η/δ)|
[
(A− α)2 + (B − β)2

]
+ (B −A)2.

Since (4.6.3) holds, we obtain a bound for the energy which is compatible with a transition inside
the neck by choosing A = α and B = β .
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By using the same techniques as in Theorems (4.6) and (4.9) we obtain the desired result. □
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